Tổng hợp ý những công thức lượng giác không thiếu thốn nhất sử dụng nhập cả công tác toán lớp 9, 10, 11, bao hàm những công thức lượng giác cơ phiên bản, công thức nhân, chuyển đổi tích trở thành cổng, lượng giác của những cung quan trọng, độ quý hiếm lượng giác của những góc quan trọng, những công thức nghiệm cơ phiên bản... Hãy nắm rõ những công thức này nhằm hoàn toàn có thể xây dựng những dạng bài xích tập dượt về lượng giác. Mời chúng ta xem thêm.
Bạn đang xem: các công thức lượng giác đặc biệt
Khái niệm tỉ con số giác của một góc nhọn
Với:
- sin : là tỉ số thân thiết cạnh đối và cạnh huyền của góc
- cos : là tỉ số thân thiết cạnh kề và cạnh huyền của góc
- tan : là tỉ số thân thiết cạnh đối và cạnh kề của góc
- cot : là tỉ số thân thiết cạnh kề và cạnh đối của góc
Mẹo học tập nằm trong : Sin tới trường, Cos ko hư hỏng, Tan liên hiệp, ,Cot kết đoàn
Công thức lượng giác cơ bản
Công thức nằm trong lượng giác
1. sin (a ± b) = sin a.cos b ± cos a.sin b
2. cos (a + b) = cos a.cos b - sin a.sin b
3. cos (a - b) = cos a.cos b + sin a.sin b
Mẹo lưu giữ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin vết trừ. Tan thì tan nọ tan cơ phân tách mang đến khuôn số 1 trừ tan tan.
Công thức những cung links bên trên lối tròn xoe lượng giác
Mẹo nhớ: cos đối, sin bù, phụ chéo cánh, tan rộng lớn kém cỏi π
Hai góc đối nhau:
- cos (-x) = cos x
- sin (-x) = -sin x
- tan (-x) = -tan x
- cot (-x) = -cot x
Hai góc bù nhau:
- sin (π - x) = sin x
- cos (π - x) = -cos x
- tan (π - x) = -tan x
- cot (π - x) = -cot x
Hai góc phụ nhau:
- sin (π/2 - x) = cos x
- cos (π/2 - x) = sin x
- tan (π/2 - x) = cot x
- cot (π/2 - x) = tan x
Hai góc rộng lớn kém cỏi π:
- sin (π + x) = -sin x
- cos (π + x) = -cos x
- tan (π + x) = tan x
- cot (π + x) = cot x
Hai góc rộng lớn kém cỏi π/2:
- sin (π/2 + x) = cos x
- cos (π/2 + x) = -sin x
- tan (π/2 + x) = -cot x
- cot (π/2 + x) = -tan x
Công thức nhân
Công thức nhân đôi:
Công thức nhân ba:
Công thức nhân bốn:
- sin4a = 4.sina.cos3a - 4.cosa.sin3a
- cos4a = 8.cos4a - 8.cos2a + 1
- hoặc cos4a = 8.sin4a - 8.sin2a + 1
Công thức hạ bậc
Thực rời khỏi những công thức này đều được chuyển đổi rời khỏi kể từ công thức lượng giác cơ phiên bản, ví dụ như: sin2a=1 - cos2a = 1 - (cos2a + 1)/2 = (1 - cos2a)/2.
Xem thêm: nguyên hàm logarit
Công thức đổi thay tổng trở thành tích
Mẹo nhớ: cos nằm trong cos vị 2 cos cos, cos trừ cos vị trừ 2 sin sin; sin nằm trong sin vị 2 sin cos, sin trừ sin vị 2 cos sin.
Công thức chuyển đổi tích trở thành tổng
Nghiệm phương trình lượng giác
Phương trình lượng giác cơ bản:
3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)
4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)
Phương trình lượng giác nhập tình huống đặc biệt:
- sin a = 0 ⇔ a = kπ; (k ∈ Z)
- sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
- sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
- cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
- cos a = 1 ⇔ a = k2π; (k ∈ Z)
- cos a = -1 ⇔ a = π + k2π; (k ∈ Z)
9. Dấu của những độ quý hiếm lượng giác
Góc phần tư số | I | II | III | IV |
Giá trị lượng giác | ||||
sin x | + | + | - | - |
cos x | + | - | - | + |
tan x | + | - | + | - |
cot x | + | - | + | - |
Bảng độ quý hiếm lượng giác một vài góc đặc biệt
Tỉ con số giác của 2 góc phụ nhau. ( α + β = 90°)
sin α = cos β cos α = sin β
tan α = cot β cot α = tan β
Bảng tỉ số của những góc đặc biệt
Công thức lượng giác té sung
Biểu biểu diễn công thức theo đòi
Xem thêm: đề thi imo 2022
- Các công thức đạo hàm và đạo dung lượng giác không thiếu thốn nhất
Bình luận