Tổng phù hợp những công thức lượng giác không hề thiếu nhất người sử dụng vô cả công tác toán lớp 9, 10, 11, bao hàm những công thức lượng giác cơ phiên bản, công thức nhân, thay đổi tích trở nên cổng, lượng giác của những cung quan trọng, độ quý hiếm lượng giác của những góc quan trọng, những công thức nghiệm cơ phiên bản... Hãy nắm rõ những công thức này nhằm rất có thể xây dựng những dạng bài bác luyện về lượng giác. Mời chúng ta xem thêm.
Bạn đang xem: công thức cơ bản lượng giác
Khái niệm tỉ con số giác của một góc nhọn
Với:
- sin : là tỉ số thân thích cạnh đối và cạnh huyền của góc
- cos : là tỉ số thân thích cạnh kề và cạnh huyền của góc
- tan : là tỉ số thân thích cạnh đối và cạnh kề của góc
- cot : là tỉ số thân thích cạnh kề và cạnh đối của góc
Mẹo học tập nằm trong : Sin tới trường, Cos ko hư hỏng, Tan liên minh, ,Cot kết đoàn
Công thức lượng giác cơ bản
Công thức nằm trong lượng giác
1. sin (a ± b) = sin a.cos b ± cos a.sin b
2. cos (a + b) = cos a.cos b - sin a.sin b
3. cos (a - b) = cos a.cos b + sin a.sin b
Mẹo ghi nhớ công thức cộng: Sin thì sin cos cos sin, cos thì cos cos sin sin vệt trừ. Tan thì tan nọ tan bại liệt phân chia mang lại hình mẫu số 1 trừ tan tan.
Công thức những cung link bên trên đàng tròn xoe lượng giác
Mẹo nhớ: cos đối, sin bù, phụ chéo cánh, tan rộng lớn thông thường π
Hai góc đối nhau:
- cos (-x) = cos x
- sin (-x) = -sin x
- tan (-x) = -tan x
- cot (-x) = -cot x
Hai góc bù nhau:
- sin (π - x) = sin x
- cos (π - x) = -cos x
- tan (π - x) = -tan x
- cot (π - x) = -cot x
Hai góc phụ nhau:
- sin (π/2 - x) = cos x
- cos (π/2 - x) = sin x
- tan (π/2 - x) = cot x
- cot (π/2 - x) = tan x
Hai góc rộng lớn thông thường π:
- sin (π + x) = -sin x
- cos (π + x) = -cos x
- tan (π + x) = tan x
- cot (π + x) = cot x
Hai góc rộng lớn thông thường π/2:
- sin (π/2 + x) = cos x
- cos (π/2 + x) = -sin x
- tan (π/2 + x) = -cot x
- cot (π/2 + x) = -tan x
Công thức nhân
Công thức nhân đôi:
Công thức nhân ba:
Công thức nhân bốn:
- sin4a = 4.sina.cos3a - 4.cosa.sin3a
- cos4a = 8.cos4a - 8.cos2a + 1
- hoặc cos4a = 8.sin4a - 8.sin2a + 1
Công thức hạ bậc
Thực rời khỏi những công thức này đều được thay đổi rời khỏi kể từ công thức lượng giác cơ phiên bản, ví dụ như: sin2a=1 - cos2a = 1 - (cos2a + 1)/2 = (1 - cos2a)/2.
Xem thêm: cách tính số phức
Công thức trở thành tổng trở nên tích
Mẹo nhớ: cos nằm trong cos bởi vì 2 cos cos, cos trừ cos bởi vì trừ 2 sin sin; sin nằm trong sin bởi vì 2 sin cos, sin trừ sin bởi vì 2 cos sin.
Công thức thay đổi tích trở nên tổng
Nghiệm phương trình lượng giác
Phương trình lượng giác cơ bản:
3. tan a = tan b ⇔ a = b + kπ; (k ∈ Z)
4. cot a = cot b ⇔ a = b + kπ; (k ∈ Z)
Phương trình lượng giác vô tình huống quánh biệt:
- sin a = 0 ⇔ a = kπ; (k ∈ Z)
- sin a = 1 ⇔ a = π/2 + k2π; (k ∈ Z)
- sin a = -1 ⇔ a = -π/2 + k2π; (k ∈ Z)
- cos a = 0 ⇔ a = π/2 + kπ; (k ∈ Z)
- cos a = 1 ⇔ a = k2π; (k ∈ Z)
- cos a = -1 ⇔ a = π + k2π; (k ∈ Z)
9. Dấu của những độ quý hiếm lượng giác
Góc phần tư số | I | II | III | IV |
Giá trị lượng giác | ||||
sin x | + | + | - | - |
cos x | + | - | - | + |
tan x | + | - | + | - |
cot x | + | - | + | - |
Bảng độ quý hiếm lượng giác một trong những góc quánh biệt
Tỉ con số giác của 2 góc phụ nhau. ( α + β = 90°)
sin α = cos β cos α = sin β
tan α = cot β cot α = tan β
Bảng tỉ số của những góc quánh biệt
Công thức lượng giác bửa sung
Biểu trình diễn công thức bám theo
Xem thêm: tính độ dài đoạn thẳng ab lớp 12
- Các công thức đạo hàm và đạo dung lượng giác không hề thiếu nhất
Bình luận