1. Định nghĩa
Cho nhì số dương a, b với \(a\ne1\). Nghiệm độc nhất của phương trình \({a^x} = b\) được gọi là \({\log _a}b\) ( tức là số \(\alpha\) sở hữu đặc điểm là \({a^\alpha } = b\)).
Bạn đang xem: lôgarit
Như vậy \({\log _a}b = \alpha \Leftrightarrow {a^\alpha } = b\).
Ví dụ: \({\log _4}16 = 2\) vì thế \({4^2} = 16\).
2. Lôgarit thập phân và lôgarit tự động nhiên
Lôgarit cơ số 10 còn được gọi là lôgarit thập phân, số log10b thông thường được viết lách là logb hoặc lgb.
Lôgarit cơ số \(e\) (\(e= \mathop {\lim }\limits_{n \to + \infty } {\left( {1 + \dfrac 1 n} \right)^n}\) ≈ 2,718281828459045) còn được gọi là lôgarit bất ngờ, số logeb thông thường được viết lách là lnb.
3. Tính hóa học của lôgarit
Lôgarit sở hữu những đặc điểm vô cùng phong phú và đa dạng, rất có thể chia nhỏ ra trở thành những group sau đây:
1) Lôgarit của đơn vị chức năng và lôgarit của cơ số:
Với cơ số tùy ý, tớ luôn luôn sở hữu loga1 = 0 và logaa= 1.
2) Phép nón hóa và phép tắc lôgarit hóa theo gót nằm trong cơ số (mũ hóa số thực α theo gót cơ số a là tính aα; lôgarit hóa số dương b theo gót cơ số a là tính logab) là nhì phép tắc toán ngược nhau.
\(∀a >0 \,(a\ne\) 1), \(∀b> 0\), \({a^{{{\log }_a}b}} = b\)
\(∀a >0 \, (a\ne 1)\), \({\log _a}{a^\alpha }= α\)
3) Lôgarit và những phép tắc toán: Phép lôgarit hóa đổi thay phép tắc nhân trở thành phép tắc nằm trong, phép tắc tạo thành phép tắc trừ, phép tắc thổi lên lũy quá trở thành phép tắc nhân, phép tắc khai căn trở thành phép tắc phân tách, rõ ràng là
Với \(\forall a,{b_1},{b_2} > 0,a \ne 1\) tớ có:
+) \({\log _a}\left( {{b_1}{b_2}} \right) = {\log _a}{b_1} + {\log _a}{b_2}\)
+) \({\log _a}\left( {\dfrac{{{b_1}}}{{{b_2}}}} \right) = {\log _a}{b_1} - {\log _a}{b_2}\)
+) \(∀a,b >0\, (a\ne 1),\) \(∀α\) tớ có:
\({\log _a}{b^\alpha } = \alpha. {\log _a}b\)
\({\log _a}\root n \of b = \dfrac{1}{n}.{\log _a}b\)
Ví dụ: Tính \(A = {\log _2}\dfrac{{15}}{2} - 2{\log _2}\sqrt 3 \).
Ta có:
Xem thêm: 3 thanh kiếm của zoro
\(\begin{array}{l}A = {\log _2}\dfrac{{15}}{2} - 2{\log _2}\sqrt 3 \\\,\,\,\,\, = {\log _2}15 - {\log _2}2 - 2.\dfrac{1}{2}{\log _2}3\\\,\,\,\,\, = {\log _2}\left( {3.5} \right) - 1 - {\log _2}3\\\,\,\,\,\, = {\log _2}3 + {\log _2}5 - 1 - {\log _2}3\\\,\,\,\,\, = {\log _2}5 - 1\end{array}\)
4) Đổi cơ số: cũng có thể fake những phép tắc lấy lôgarit theo gót những cơ số không giống nhau về sự tính lôgarit theo gót và một cơ số cộng đồng, rõ ràng là
\(∀a,b,c >0 \, (a, c\ne1)\), \({\log _a}b = \dfrac{{{\log }_c}b} {{{\log }_c}a}\).
Đặc biệt \(∀a,b >0 \, (a,b \ne1) \, {\log _a}b = \dfrac{1}{{{\log }_b}a}\)
\(∀a,b >0 \, (a \ne1), ∀α, β\, (α\ne 0)\) tớ có:
\({\log _{{a^\alpha }}}b = \dfrac{1}{\alpha }{\log _a}b\)
\({\log _{{a^\alpha }}}{b^\beta } = \dfrac{\beta}{ \alpha }{\log _a}b\)
\({\log _a}\dfrac{1}{b} = - {\log _a}b\left( {0 < a \ne 1;b > 0} \right)\)
\({\log _a}\sqrt[n]{b} = {\log _a}{b^{\frac{1}{n}}} = \dfrac{1}{n}{\log _a}b\) \( \left( {0 < a \ne 1;b > 0;n > 0;n \in {N^*}} \right)\)
\({\log _a}b.{\log _b}c = {\log _a}c \Leftrightarrow {\log _b}c = \dfrac{{{{\log }_a}c}}{{{{\log }_a}b}}\) \(\left( {0 < a,b \ne 1;c > 0} \right)\)
\({\log _a}b = \dfrac{1}{{{{\log }_b}a}} \Leftrightarrow {\log _a}b.{\log _b}a = 1\) \(\left( {0 < a,b \ne 1} \right)\)
\({\log _{{a^n}}}b = \dfrac{1}{n}{\log _a}b\) \(\left( {0 < a \ne 1;b > 0;n \ne 0} \right)\)
Ví dụ: Tính \(B = 3{\log _8}12 - 2{\log _2}3 + 12{\log _{16}}\sqrt[3]{3}\)
Ta có:
\(\begin{array}{l}B = 3{\log _8}12 - 2{\log _2}3 + 12{\log _{16}}\sqrt[3]{3}\\\,\,\,\,\, = 3{\log _{{2^3}}}12 - 2{\log _2}3 + 12.{\log _{{2^4}}}\sqrt[3]{3}\\\,\,\,\,\, = 3.\dfrac{1}{3}{\log _2}12 - 2{\log _2}3 + 12.\dfrac{1}{4}{\log _2}\sqrt[3]{3}\\\,\,\,\,\, = {\log _2}12 - 2{\log _2}3 + 3{\log _2}\sqrt[3]{3}\\\,\,\,\,\, = {\log _2}12 - {\log _2}{3^2} + {\log _2}{\left( {\sqrt[3]{3}} \right)^3}\\\,\,\,\,\, = {\log _2}12 - {\log _2}9 + {\log _2}3\\\,\,\,\,\, = {\log _2}\dfrac{{12.3}}{9}\\\,\,\,\,\, = {\log _2}4\\\,\,\,\,\, = {\log _2}{2^2}\\\,\,\,\,\, = 2\end{array}\)
Hệ quả:
a) Nếu \(a > 1;b > 0\) thì \({\log _a}b > 0 \Leftrightarrow b > 1;\) \({\log _a}b < 0 \Leftrightarrow 0 < b < 1\).
b) Nếu \(0 < a < 1;b > 0\) thì \({\log _a}b < 0 \Leftrightarrow b > 1;\) \({\log _a}b > 0 \Leftrightarrow 0 < b < 1\).
c) Nếu \(0 < a \ne 1;b,c > 0\) thì \({\log _a}b = {\log _a}c \Leftrightarrow b = c\).
Xem thêm: out of this world là gì
Chú ý:
Logarit thập phân \({\log _{10}}b = \log b\left( { = \lg b} \right)\) sở hữu rất đầy đủ đặc điểm của logarit cơ số \(a\).
Bình luận